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Abstract— In the control-based approach to robotics, com-
plex behavior is created by sequencing and combining control
primitives. While it is desirable for the robot to autonomously
learn the correct control sequence, searching through the large
number of potential solutions can be time consuming. This paper
constrains this search to variations of a generalized solution
encoded in a framework known as anaction schema. A new
algorithm, SCHEMA STRUCTURED LEARNING, is proposed that
repeatedly executes variations of the generalized solution in
search of instantiations that satisfy action schema objectives. This
approach is tested in a grasping task where Dexter, the UMass
humanoid robot, learns which reaching and grasping controllers
maximize the probability of grasp success.

I. I NTRODUCTION

In contrast to the sense-think-act paradigm, control-based
and behavior-based approaches to robotics realize desired
behavior by sequencing and combining primitive controllers
or behaviors. These approaches depend heavily on a higher-
level decision-making mechanism that selects the correct se-
quence or combination of primitives to execute. One way to
automatically learn the correct sequence of primitives is to
encode the problem as a Markov Decision Process, and solve
it using Reinforcement Learning [1], [2]. However, in the
absence of ana priori model of controller performance, this
approach requires the robot to explore the effects executing
every action in every state. Although the system designer
can constrain the potential action choices [1], the need to
explore a large number of actions can slow down learning.
This paper addresses this problem by encoding a generalized
solution as anaction schema. Learning speed is increased
by constraining the system only to consider variations of
this generalized solution. A new algorithm calledSCHEMA

STRUCTURED LEARNINGdiscovers which instantiations of the
action schema are appropriate in different problem contexts.
This paper explores this approach in the context or reaching
and grasping.

Our approach is based on the notion of aschema, first
proposed in the psychology literature by Piaget. Piaget loosely
defines a schema to be a mental representation of an action or
perception [3]. Through the process ofassimilation, the child
adapts an existing schema to incorporate new experiences,
encoding these experiences as variations on the same general
structure. In what Piaget calls a circular reaction, the child

is motivated to reproduce behavior that results in activation
of a reflex or an “interesting” result. Piaget’s model is an
inspiration for the current paper. In a process similar to the
circular reaction, this paper proposes that the robot repeatedly
executes variations of the general behavior encoded by the
action schema. By observing the effects of different instanti-
ations of the action schema, the robot learns how to produce
the desired behavior in different problem contexts.

Arbib’s schema theorybrings the notion of the schema
into a computational framework. At the lowest level, schema
theory proposes two major types of schemas: the perceptual
schema and the motor schema [4]. A perceptual schema is a
process that responds to only a specific, task-relevant concept.
A motor schema is a generalized program that describes how
to accomplish a task. When a perceptual schema triggers
that its target concept is present, it can “give access” to a
motor schema that takes the appropriate action. Schema theory
proposes that a large number of perceptual schemas and motor
schemas can interact in the context of acoordinated control
program, thereby generating intelligent behavior [4]. Arkin
applies some of these ideas to behavior-based robotics [2].

Gary Drescher also develops a schema-based approach to in-
telligent behavior. Drescher’sschema mechanismappropriates
the Piagetian schema as its fundamental building block and
develops a complex framework for computationally learning
new concepts,items, and hypothesizing new schemas to inter-
act with these concepts [5]. Learning starts with a few schemas
and primitive items that represent basic motor activities and
perceptions. By executing schemas, the system discovers new
items and proposes new schemas for interacting with these
items.

This paper proposes a new approach to robot learning based
on a generalized representation of robot behavior known as
the action schema. The action schema may beinstantiated
by specific implementations of the generalized behavior. An
instantiation is considered tosucceedor fail depending upon
whether it results in desired state transitions specified by the
action schema. A new on-line learning algorithm,SCHEMA

STRUCTURED LEARNING, is proposed that explores different
instantiations and discovers which instantiations are most
likely to succeed through a process of trial-and-error. This
paper explores the action schema approach in the context of



robotic reaching and grasping. Generalized grasping behavior
is represented by aLOCALIZE-REACH-GRASP action schema.
SCHEMA STRUCTURED LEARNING discovers how to select
appropriate reach and grasp control actions based on coarse
visual information including object location, orientation, ec-
centricity, and length. A series of experiments are reported
where Dexter, the UMass bimanual humanoid robot, attempts
to grasp an object using various different reach and grasp prim-
itives. The robot learns to select reach and grasp primitives that
optimize the probability of a successful grasp. This paper is
an expansion of our earlier work reported in [6]. The current
paper better defines optimality in the context of the action
schema and proposes a sample-based version of the algorithm.

In addition to describing controllers used for localizing,
reaching, and grasping, Section II gives a brief overview of the
control basisapproach to robot behavior used in this paper.
Sections III and IV describe the action schema framework,
define the notion of the optimal policy instantiation, and give
an algorithm,schema structured learning, for autonomously
discovering these optimal instantiations. Finally, Section V
presents experimental results that demonstrateschema struc-
tured learningto be a practical way of autonomously learning
reaching and grasping behavior.

II. CONTROL-BASED REACHING AND GRASPING

When using a control-based approach, a framework is
needed that allows controllers to be sequenced in an orga-
nized way. Thecontrol basisframework accomplishes this by
organizing the set of viable controllers and providing a robust
way of evaluating system state [1]. This section describes the
control basis framework and details controllers that are used
for localizing, reaching, and grasping.

The control basis can systematically specify an arbitrary
closed-loop controller by matching anartificial potential func-
tion with a sensor transformand effector transform[1]. The
potential function specifies controller objectives, the effector
transform specifies what degrees of freedom the controller
uses, and the sensor transform implements the controller
feedback loop. For example, consider aREACH controller.
The sensor transform specifies the goal configuration of the
end-effector. The effector transform specifies what degrees of
freedom are used to accomplish the task.

In general, the control basis realizes a complete con-
troller by selecting one artificial potential from a set
Φ = {φ1, φ2, . . .}, one sensor transform from a setΣ =
{σ1, σ2, . . .}, and one effector transform from a setΥ =
{τ1, τ2, . . .}. Given Φ, Σ, and Υ, the set of controllers that
may be generated isΠ ⊆ Φ × Σ × Υ. When specifying
a fully-instantiated controller, the notationφi|στ denotes the
controller constructed by parameterizing potential functionφi

with sensor transformσ and effector transformτ .
The control basis framework also allows composite con-

trollers to be constructed that execute multiple constituent con-
trollers concurrently. Each constituent controller is assigned a
priority, and controllers with lower priority are executed in
the nullspace of controllers with higher priority. Composite

controllers are denoted,φb|στ / φa|στ , where φb|στ is said to
execute “subject-to” (i.e. in the nullspace of)φa|στ .

System state is measured in terms of controller dynamics. At
any point in time, the instantaneous error and the instantaneous
gradient of error can be evaluated. Although the more general
system dynamics can be treated [7], in this paper we will
consider only controller convergence to establish system state.
For example, the state of having grasped an object with some
effector is represented by the convergence status of a grasp
controller parameterized by that effector transform.

This paper creates grasping behavior by combining and
sequencing controllers based on theLOCALIZE, REACH, and
GRASP artificial potentials. OneLOCALIZE controller is used
in the experiments described in this paper. This controller,
φl|σl

τcam
, segments the object and characterizes the resulting

blob in terms of its three-dimensional Cartesian position,
orientation, length, and eccentricity.

The REACH controllers that are used in this paper are
referenced with respect to the last object position recovered by
a LOCALIZE controller. There are two types ofREACH con-
trollers:φrp|σy(x)

τy andφro|σy(θ)
τy . φrp|σy(x)

τy moves the centroid
of the y contact set to a position offset ofx from the object
centroid along the object major axis.φro|σy(θ)

τy associates each
contact with a line from the contact frame centroid through
the contact itself.φro|σy(θ)

τy orients the manipulator so that the
average angle between each contact’s line and the object major
axis (for they set of contacts) isθ. If φrp|σy(x)

τy executes alone,
then the robot reaches to the position while leaving orientation
unspecified. If orientation control executes subject to position
control, φro|σy(θ)

τy / φrp|σy(x)
τy , then the robot reaches to the

desired position while also attempting to achieve the desired
orientation.

GRASP controllers displace contacts toward good grasp
configurations using feedback control [8], [9]. This approach
uses tactile feedback to calculate an error gradient and displace
grasp contacts on the object surface without a geometric
object model. After making light contact with the object using
sensitive tactile load cells, the controller displaces contacts
toward minima in the grasp error function using discrete
probes [8] or a continuous sliding motion [10]. This paper uses
two GRASPcontrollers:φg|σ123

τ123
andφg|σ12

τ12
. φg|σ123

τ123
uses three

physical contacts to synthesize a grasp, whileφg|σ12
τ12

combines
two physical contacts (out of three) into avirtual finger [11]
that is considered to apply a single force that opposes a third
physical contact.

III. T HE ACTION SCHEMA

The action schema encodes generalized robot behavior that
can be instantiated by a specified set of control policies. This
is advantageous in the context of learning because it constrains
the number of potential solutions that need to be considered.
The generalized behavior, encoded by the action schema, is
represented by a policy defined over an abstract state and
action space. A one-to-many mapping is defined between the
abstract state and action space and anunderlying state and
action space. This underlying space is assumed to represent
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Fig. 1. The localize-reach-grasp action schema. The circles with binary
numbers in them represent abstract states. The arrows represent abstract
actions and possible transitions.

system state and action with the finest granularity available
in the control representation. The mapping represents a set of
underlying states by a single abstract state and corresponds
each abstract action with a number of potential underlying
action alternatives. This allows the action schema’s abstract
policy to be translated into a number ofpolicy instantiations
that define a set of potential solutions. The action schema also
specifies an abstract transition function that defines desired
transition behavior in the underlying space. The objective of
schema structured learning is to discover which instantiations
of an action schema’s abstract policy are most likely to result
in transitions that are consistent with the abstract transition
function.

Let S′×A′ be the abstract state-action space defined by the
action schema, and letS × A be the underlying state-action
space that represents possible robot behaviors. The abstract
policy is a mapping from abstract states to abstract actions,

π′ : S′ → A′. (1)

This function deterministically specifies which abstract action
the system should take in any given abstract state. For exam-
ple, Figure 1 illustrates theLOCALIZE-REACH-GRASP action
schema. The circles illustrate four abstract states that represent
the generalized stages of the behavior. There are three abstract
actions:φl (LOCALIZE), φrp (REACH), andφg (GRASP). The
abstract policy,π′, defines which abstract actions are to be
taken from abstract states:

π′(000) = φl (2)

π′(001) = φrp

π′(011) = φg.

For example, if the robot is in abstract state(000), then π′

executes abstract actionφl.
The abstract policy is mapped to policy instantiations that

implement the same qualitative type of behavior. This policy
mapping is derived from state and action mappings that group
together similar states and actions as follows. Letf : S → S′

and g : A → A′ be state and action mappings that uniquely
assign each underlying state and action to an abstract state
and action. The inverses of these functions are defined to be
f−1(s′) = {s ∈ S|f(s) = s′} andg−1(a′) = {a ∈ A|g(a) =
a′}. g−1 maps each abstract action to an equivalence class
of actions (i.e., controllers) that perform the same function
in different ways. In the control basis representation, these
controllers share the same artificial potential, but have dif-
ferent sensor and effector parameterizations. Similarly,f−1
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Fig. 2. Possible instantiations of theLOCALIZE-REACH-GRASP action
schema. The inverse action mapping,g−1, projects the abstractREACH action
onto the set of possibleREACH actions.

maps each abstract state to an equivalence class of states.
In the case of theLOCALIZE-REACH-GRASP action schema
illustrated in Figure 1, the three abstract actions map to the
variousLOCALIZE, REACH, and GRASP controllers described
in Section II:

g−1(φl) = {φl|σl
τcam

}, (3)

g−1(φr) = {φrp|σ123(x)
τ123

, φrp|σ12(x)
τ12

, (4)

φro|σ123(θ)
τ123

/ φrp|σ123(x)
τ123

,

φro|σ12(θ)
τ12

/ φrp|σ12(x)
τ12

},

g−1(φg) = {φg|σ123
τ123

, φg|σ12
τ12
}. (5)

The state and action mappings above allow the abstract
policy to be translated into a set of potential policy instan-
tiations. This can be accomplished on a step-by-step basis
by determining the set of actions that are consistent with the
abstract policy in a given state. Assume that the system is in
abstract state,s′t. The abstract action specified byπ′(s′t) can be
projected onto a set of equivalent underlying actions using the
inverse action mapping,g−1(π′(s′t)). Therefore, given the state
and action mapping, the abstract policy,π′, can be mapped
onto any policy,π, such that,

∀st ∈ S, π(st) ∈ B(st), (6)

where
B(st) = g−1(π′(f(st))). (7)

These policies are calledpolicy instantiationsof the abstract
policy. This is illustrated in Figure 2. Suppose that the robot
is in state s2 ∈ S. The state mapping,f(s2) = (001),
projects this state onto(001) ∈ S′. From this abstract state,
the abstract policy takes abstract actionφrp, π′(001) =
φrp. Finally, the inverse action mapping,g−1, projects



this abstract action onto the reach choices,g−1(φrp) =
{φrp|σ123(x)

τ123 , φrp|σ12(x)
τ12 , φro|σ123(θ)

τ123 / φrp|σ123(x)
τ123 , φro|σ12(θ)

τ12 /

φrp|σ12(x)
τ12 }. Although this enumeration of potentialREACH

controllers does not separately list controllers with different
position or orientation offsets,φrp implicitly maps to a real-
valued space ofREACH controllers with different offsets.

The goal of schema structured learning is to discover
the policy instantiation(s) that maximizes the probability of
meeting transition constraints specified by the action schema.
The action schema deterministically characterizes the desired
behavior of the robot with the abstract transition function,

T ′ : S′ ×A′ → S′. (8)

This specifies how the system must transition in response to
executing the action. When executing actiona ∈ A from state
st ∈ S, the next state,st+1 ∈ S, is consistent with the abstract
transition function when the following holds true:

st+1 ∈ N(st, a), (9)

where
N(st, a) = f−1(T ′(f(st), g(a))). (10)

In this expression,f(st) andg(a) translate the underlying state
and action into their abstract equivalents. The abstract transi-
tion function, T ′, maps this abstract action into an expected
next abstract state. Finally,f−1 translates the expected next
abstract state into a set of underlying next states. As long as
action a ∈ A causes the robot to transition to one of these
next states, the action is said tosucceed. If the action causes a
different transition, then the actionfails. For example, consider
the LOCALIZE-REACH-GRASP action schema illustrated in
Figure 2 again. The abstract transition function,

T ′(000, φl) = 001 (11)

T ′(001, φrp) = 011
T ′(011, φg) = 111,

is encoded in the arrows in the action schema on the right. If
the robot takes abstract actionφrp from abstract state(001),
the abstract transition function requires the system to transition
to state(011). Suppose that the robot is in states2 ∈ S, and
executesφrp|σ(x)12

τ12 . If the system does not transition to a state,
st+1 ∈ S, that maps to(011) ∈ S′, f(st+1) = (011), then
φrp|σ(x)

τ fails.
In schema structured learning, the robot continues to execute

actions in accordance with the abstract policy until an action
fails or an absorbing state is reached. In theLOCALIZE-
REACH-GRASP action schema (Figure 1),(111) is an absorb-
ing state.

Bringing these pieces together, an action schema is a
represented as a tuple,

S = 〈S′, A′, π′, T ′〉 , (12)

where S′ is the abstract state set,A′ is the abstract action
set,π′ defines the abstract policy, andT ′ defines the abstract
transition function. When defining an action schema, we will

require that the path implicitly specified byπ′ and T ′ does
not contain cycles.

IV. OPTIMAL POLICY INSTANTIATIONS

The abstract policy encoded by the action schema maps to
many different policy instantiations. The goal of the system is
to discover which policy instantiations maximize the probabil-
ity of reaching the goal, while satisfying the action schema’s
transition contraints. This is called theoptimalpolicy instanti-
ation. This section defines the optimal policy instantiation and
introduces theSCHEMA STRUCTURED LEARNINGalgorithm
given in Table I.

A. Definition of the Optimal Policy Instantiation

The abstract transition function defines how the robot sys-
tem must transition after executing actions. An action is said
to succeedwhen it causes a transition that is consistent with
the action schema abstract transition function. By induction, a
state-action trajectory succeeds when each component action
succeeds. Anoptimal policy instantiation,π∗, is one which
maximizes the probability of a successful trajectory. Let
Pπ(a|st) be the probability of a successful trajectory, given
that the system takes actiona ∈ A, starting in statest ∈ S,
and follows policy instantiationπ after that. IfΠ is defined to
be the set of all possible policies, then

P ∗(a|st) = max
π∈Π

Pπ(a|st) (13)

is the maximum probability of a successful trajectory taken
over all possible policies. This allows the optimal policy to be
calculated using,

π∗(st) = arg max
a∈B(st)

P ∗(a|st), (14)

where B(st) = g−1(π′(f(st))) (Equation 7) is the set of
actions that are consistent with the abstract transition function
when the system is in statest ∈ S. The optimal policy always
selects the action that maximizes the probability of satisfying
action schema transition constraints.

B. Calculating an Optimal Policy Instantiation

Unfortunately, it is impractical to use Equations 13 and 14
directly to solve for the optimal policy instantiation, because
the set of possible policy instantiations,Π, is exponential in
the number of actions. However, as is the case with Markov
Decision Processes (MDPs), this problem admits a dynamic
programming algorithm that is polynomial in the number of
viable state-action pairs. Whereas the dynamic programming
approach to MDPs requires successive approximation of the
true value function, it is possible to solve for the optimal policy
instantiation of an action schema in a single “pass.”

Recall that P ∗(a|st) is the maximum probability of a
successful trajectory, given that the robot takes actiona ∈ A
from statest ∈ S and follows the optimal policy instantiation
thereafter. This can be calculated recursively,

P ∗(a|st) = P (success|st, a) (15)∑

st+1∈N(st+1,a)

T (st+1|st, a) max
a∈B(st+1)

P ∗(a|st+1),



TABLE I

SCHEMA STRUCTURED LEARNING ALGORITHM

FunctionSCHEMA STRUCTURED LEARNING

1. Repeat
2. Get current statest ∈ S
3. Let B(st) = Df(st)(π

′(f(st)))
4. Evaluateπ∗(st) = arg maxa∈B(st) P ∗(a|st)
5. Executeπ∗(st)
6. Get next statest+1 ∈ S
7. Update transition modelP (success|st, a)
8. Update sample set inDf(st) based onP ∗
9. If actionπ∗(st) failed, break from loop.
10. Whilef(st) is not in an absorbing state.

where P (success|st, a) is the probability that actiona suc-
ceeds from statest, N(st+1, a) is defined in Equation 10,
andT (st+1|st, a) is the probability that taking actiona from
statest causes the robot to transition to statest+1 (notice the
similarities to the standard Bellman equation.) If it is possible
to deterministically characterize howsuccessfulactions tran-
sition, then this equation can be simplified,

P ∗(a|st) = (16)

P (success|st, a) max
a∈B(Ts(st,a))

P ∗(a|Ts(st, a)),

where

Ts : S ×A → S, Ts(st, a) = st+1 (17)

is a function that deterministically characterizes how an action
transitions if the action is assumed to be successful. Note that
this does not mean that the underlying transition function must
be deterministic in general - the outcome is deterministic only
if the action succeeds.

C. Schema Structured Learning Algorithm

This approach to calculating the optimal policy instanti-
ation is the basis of theSCHEMA STRUCTURED LEARNING

algorithm given in Table I. Given an action schema and the
appropriate mapping, this algorithm learns the optimal policy
instantiation online through a trial-and-error process. Whereas
many trial-and-error learning algorithms require substantial
training, the structure imposed by the action schema frame-
work makesSCHEMA STRUCTURED LEARNINGpractical for
many real-life robot applications. As it is written in Table I,
this algorithm executes one instantiation of the generalized
behavior. Note that the algorithm must be executed multiple
times in order to accumulate experience and learn.

A key feature of the version ofSCHEMA STRUCTURED

LEARNING given in Table I is that it is sample-based. Assume
that the robot is in state,st ∈ S, and thata′ = π′(f(st)).
Instead of evaluating every instantiation of the abstract policy,
this algorithm only evaluates a fixed number of samples from
the set,

Df(st)(a
′) ⊆ g−1(a′). (18)

This set is drawn from the probability distributionP ∗(a|s)
marginalized over all statess ∈ f−1(st), thereby over-
sampling regions of the action space that are estimated to have
a high probability of leading to a successful trajectory. Step 8
of SCHEMA STRUCTURED LEARNINGresamples this set based
on the latest approximation ofP ∗. This approach enables the
algorithm to evaluate a real-valued action space (such as the
REACH controller with position and orientation offsets) when
selecting a policy instantiation to execute.

SCHEMA STRUCTURED LEARNING gains experience by
repeatedly executing policy instantiations of the action schema.
While the system initially executes random instantiations of
the abstract policy, performance quickly improves. Assume
that the robot is in statest ∈ S. In steps 3 and 4, the algorithm
evaluates the probability of a successful trajectory,P ∗(a|st),
using Equation 17 for all actions inDf(st)(π

′(f(st))). By
Equation 14, the action that maximizes this probability is part
of an optimal policy instantiation (assuming that the sample
set contains this action). Step 5 executes this action, and step
6 evaluates the outcome of the action. Step 7 incorporates
this experience into the transition model. Step 8 re-samples
Df(st) from the new estimate ofP ∗. Steps 9 and 10 continue
to iterate taking actions until an action fails or an absorbing
state is reached.SCHEMA STRUCTURED LEARNING must be
repeatedly executed until learning is complete.

V. EXPERIMENTS

A series of eight experiments were performed that char-
acterize the learning performance ofSCHEMA STRUCTURED

LEARNING in the context of grasp synthesis. In each experi-
ment, Dexter attempted to localize, reach, and grasp a towel
roll measuring 20cm high and 10cm in diameter 26 times. In
these experiments, only three-fingered grasps,φg|σ123

τ123
, were

allowed. At the beginning of each trial, the towel roll was
placed vertically in approximately the same tabletop location.
Then,SCHEMA LEARNING was executed using theLOCALIZE-
REACH-GRASP action schema until either the absorbing state
was reached or an action failed. In either case, the trial was
terminated, the system was reset, and a new trial was begun.

Figure 3 illustrates the results. Figure 3(a) shows median
grasp error as a function of trial number. This is the grasp error
measured after reaching to the object, but before executing
the GRASP controller. Before the 10th trial, the large median
grasp errors indicate thatSCHEMA STRUCTURED LEARNING

had not yet discovered how to grasp the towel roll. This means
that theGRASPcontroller must correct this poor configuration
by displacing the contacts along the object surface toward a
good grasp configuration. However, by the 10th or 15th trial,
the robot has learned to select an instantiation of theREACH

controller that minimizes moment residual errors.
Figure 3(b) illustrates the manipulator poses to which the

robot learns to reach. This contour plot shows the probability
of grasp success as a function of orientation (vertical axis) and
position (horizontal axis) relative to the object. Both position
and orientation are measured in the same way as with the
REACH controllers in Section II: position is the distance of
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Fig. 3. Results from the eight grasping experiments. (a) shows median initial grasp controller error (moment residual error) as a function of trial. This is
the quality of the grasp after executing the reach controller, but before the grasp controller. A high error indicates a poor grasp and a low error indicates a
good grasp. Note that median error reaches its lowest point after approximately 10 trials. (b) is a contour plot that shows the learned grasp knowledge. The
probability of grasp success is maximized when the manipulator reaches to a position halfway up the object (between 0.3 and 0.9) and an orientation almost
perpendicular to the object major axis.

the contact centroid between the center and one end of the
major axis; orientation is the average angle formed by the
major axis and the line between a contact and the contact
centroid. These results show that the robot learns that the
probability of a successful grasp is maximized when it reaches
to a position halfway up (between 0.3 and 0.9 of the distance
from the object centroid along the major axis) the length of the
object and at an orientation almost perpendicular (greater that
1.35 radians) to the object major axis. Intuitively, if the robot
reaches too close to the center of the object, the palm of the
hand collides with the object and the grasp fails. In addition,
a three-fingered grasp is optimized when the manipulator
orientation is approximately perpendicular to the major axis.

VI. CONCLUSION

This paper expands on the action schema approach to
robot learning proposed in [6]. In this approach, the search
for desired robot behavior is constrained by a generalized
policy encoded by the action schema. This simplifies learning:
instead of considering all possible behaviors, the robot must
only consider instantiations of the generalized action schema
policy. This paper defines the optimal policy instantiation
as that which maximizes the probability of satisfying action
schema transition specifications. In an approach reminiscent of
Piaget’s circular reaction, this paper proposes a sample-based
algorithm, SCHEMA STRUCTURED LEARNING, whereby the
robot repeatedly executes instantiations of the action schema
policy in a search for optimal instantiations. This paper reports
on experiments conducted on Dexter, the UMass bimanual
humanoid, whereSCHEMA STRUCTURED LEARNING learns
how to reach and grasp an object. The results show that the
system learns within an average of 10 trials how best to reach
and grasp an object.
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